5 feb 2011

Satélite Simón Bolívar

El Satélite Simón Bolívar es una valiosa herramienta para hacer de los sistemas de comunicación, factores determinantes para el bienestar social y está contribuyendo de manera significativa a la democratización del uso y acceso a las Tecnologías de Información y Comunicación, así como en materia de Teleeducación, Telemedicina y Telecomunicaciones.

Contempla cubrir todas aquellas necesidades nacionales que tienen que ver con las telecomunicaciones, sobre todo en aquellos lugares con poca densidad poblacional. Igualmente, pretende consolidar los programas y proyectos ejecutados por el Estado, garantizando llegar a los lugares más remotos, colocando en esos lugares puntos de conexión con el satélite, de tal manera que se garantice en tiempo real educación, diagnóstico e información a esa población que quizás no tenga acceso a ningún medio de comunicación y formación.


Beneficios Del Satélite Simón Bolívar Para Los Estudiantes

El principal beneficio que nos da el satélite simon bolívar es que favorece al mejoramiento a nivel de educación, es decir con este se crea la posibilidad de ampliar la transmisión de canales radio y Tv, con fines educativos y culturales con alcance regional, también nos brinda un soporte de conectividad para centros de acceso a Internet (Infocentro y CBIT) en zonas sin cobertura por las redes convencionales de telecomunicación, y la posibilidad de consolidar programas de telemedicina y teleeducación. Además con este satélite también  se contempla cubrir todas aquellas necesidades nacionales en cuanto a transmisión de información, acceso y transmisión de datos por internet se refiera, por consiguiente todos los estudiantes nos veremos beneficiados ya que con este satélite se logra un avance más en la tecnología y además se hace mas fácil educarnos puesto que no necesitaríamos trasladarnos a otro lugar para estudiar,  solo al conectarnos y seguir un curso por internet podríamos obtener los conocimientos que antes no se podía; cualquier ciudadano puede tener acceso a programas educacionales sin necesidad de estar físicamente en un salón de clases, llegando a un gran número de estudiantes a la vez, mediante tecnologías de telecomunicación por satélite.

Redes de Computadoras

Una red de computadoras, también llamada red de ordenadores o red informática, es un conjunto de equipos informáticos conectados entre sí por medio de dispositivos físicos que envían y reciben impulsos eléctricos, ondas electromagnéticas o cualquier otro medio para el transporte de datos para compartir información y recursos. Este término también engloba aquellos medios técnicos que permiten compartir la información.

Importancia De Las Redes De Computadores 

Hoy en día las redes de computadoras son de suma importancia en nuestra vida, ya sea en el ámbito laboral, estudiantil, social, etc. Las redes de computadoras han cambiado la forma en que operan las organizaciones actuales, a través de su uso se logran importantes mejoras, pues automatizan los procesos operativos, suministran una plataforma de información necesaria para la toma de decisiones y lo más importante su implantación logra ventajas competitivas o reducir la ventaja de los rivales. 

Las redes de computadoras sirven para compartir cualquier tipo de información, y de una manera muy rápida y eficaz, Esto es muy importante hoy en día ya que vivimos en la época de la globalización pues podría decirse que la globalización se lleva a cabo principalmente gracias a las redes de computadoras, puesto que con ellas es posible comunicarse en cuestión de segundos con cualquier país del mundo, e intercambiar información sin tener que levantarte de tu asiento. También son muy importantes, porque ahora con la tecnología que cada vez avanza con más rapidez te puedes informar de todo lo que esta pasando en el mundo además Con ellas también se pueden formar grupos de discusión en tiempo real sin importar los límites geográficos, y hasta participar en movimientos políticos o ayudar a las victimas de un desastre natural. Las redes lograron agilizar y dar un gran paso al mundo, ya que grandes cantidades de información se trasladan de un sitio a otro sin peligro de extraviarse en el camino y en cuestión de tan solo unos segundos. 

Cada día la informática adquiere más relevancia en la vida de las personas y en las empresas, Su utilización ya es un instrumento de aprendizaje que en la sociedad aumenta muy rápidamente. Actualmente ninguna empresa puede funcionar sin informática, pues a través de ella, todo se resuelve con mayor facilidad. El mundo está informatizado. Si hoy vivimos en la Era de la Información, esto se debe al avance tecnológico en la transmisión de datos y a las nuevas facilidades de comunicación, ambos impensables sin la evolución de las computadoras y dispositivos.

Clasificación De Las Redes
Por Alcance
Ø  Red De Área Personal O PAN: Wireless Personal Area Networks, Red Inalámbrica de Área Personal o Red de área personal o Personal area network es una red de computadoras para la comunicación entre distintos dispositivos (tanto computadoras, puntos de acceso a internet, teléfonos celulares, PDA, dispositivos de audio, impresoras) cercanos al punto de acceso. Estas redes normalmente son de unos pocos metros y para uso personal, así como fuera de ella.
RED DE ÁREA PERSONAL

Ø  Red De Área Local O LAN: Es una tipo de red que se limita a un área especial relativamente pequeña tal como un cuarto, un solo edificio, una nave, o un avión. Las redes de área local a veces se llaman una sola red de localización.

Ø  Red De Área De Campus O CAN: Una red de área de campus es una red de computadoras que conecta redes de área local a través de un área geográfica limitada, como un campus universitario, o una base militar.

Ø  Red De Área Metropolitana O MAN: Una red de área metropolitana (metropolitan area network o MAN, en inglés) es una red de alta velocidad (banda ancha) que da cobertura en un área geográfica extensa.

Ø  Red De Área Amplia O WAN: Las Redes de área amplia (WAN) son redes informáticas que se extienden sobre un área geográfica extensa.

Ø  Red De Área De Almacenamiento O SAN: Una red de área de almacenamiento, en inglés SAN (storage area network), es una red concebida para conectar servidores, matrices (arrays) de discos y librerías de soporte.

Ø  Red De Área Local Virtual: Una Virtual LAN ó comúnmente conocida como VLAN, es un grupo de computadoras, con un conjunto común de recursos a compartir y de requerimientos, que se comunican como si estuvieran adjuntos a una división lógica de redes de computadoras en la cuál todos los nodos pueden alcanzar a los otros por medio de broadcast (dominio de broadcast) en la capa de enlace de datos, a pesar de su diversa localización física.

Ø  Red Irregular: Es un sistema de cables y buses que se conectan a través de un módem, y que da como resultado la conexión de una o más computadoras. Esta red es parecida a la mixta, solo que no sigue los parámetros presentados en ella. Muchos de estos casos son muy usados en la mayoría de las redes.

Por Tipo De Conexión
Medios guiados
Ø  Cable Coaxial: El cable coaxial fue creado en la década de los 30, y es un cable utilizado para transportar señales eléctricas de alta frecuencia que posee dos conductores concéntricos, uno central, llamado vivo, encargado de llevar la información, y uno exterior, de aspecto tubular, llamado malla o blindaje, que sirve como referencia de tierra y retorno de las corrientes.

Ø  Cable De Par Trenzado: El cable de par trenzado es una forma de conexión en la que dos conductores eléctricos aislados son entrelazados para tener menores interferencias y aumentar la potencia y disminuir la diafonía de los cables adyacentes.

Ø  Cable De Fibra Óptica: La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir.

Medios No Guiados
Ø  Radio: Este término se aplica a la porción menos energética del espectro electromagnético, situada entre unos 3 Hz y unos 300 GHz, es aquella red que emplea la radiofrecuencia como medio de unión de las diversas estaciones de la red.
Es un tipo de red muy actual, usada en distintas empresas dedicadas al soporte de redes en situaciones difíciles para el establecimiento de cableado, como es el caso de edificios antiguos no pensados para la ubicación de los diversos equipos componentes de una Red de ordenadores.
Los dispositivos inalámbricos que permiten la constitución de estas redes utilizan diversos protocolos como el Wi-Fi: El estándar IEEE 802.11. El cual es para las redes inalámbricas, lo que Ethernet para las redes de área local (LAN) cableadas. Además del protocolo 802.11 del IEEE existen otros estándares como el HomeRFBluetooth y ZigBee.

Ø  Infrarrojos: es un tipo de radiación electromagnética de mayor longitud de onda que la luz visible, pero menor que la de las microondas. Las redes por infrarrojos permiten la comunicación entre dos nodos, usando una serie de leds infrarrojos para ello. Se trata de emisores/receptores de las ondas infrarrojas entre ambos dispositivos, cada dispositivo necesita "ver" al otro para realizar la comunicación por ello es escasa su utilización a gran escala.

Ø  Microondas: Se denomina microondas a las ondas electromagnéticas definidas en un rango de frecuencias determinado; generalmente de entre 300 MHz y 300 GHz

Por Relación Funcional
Ø  Cliente-Servidor: Esta arquitectura consiste básicamente en un cliente que realiza peticiones a otro programa (el servidor) que le da respuesta.

Ø  Igual A Igual / Peer To Peer: Es aquella red de computadoras en la que todos o algunos aspectos funcionan sin clientes ni servidores fijos, sino una serie de nodos que se comportan como iguales entre sí.
Red basada en Peer to Peer

Por La Direccionalidad De Los Datos
Ø  Simplex O Unidireccional: Un Equipo Terminal de Datos transmite y otro recibe. Ejemplo: televisión. teclados y monitores.
Ø  Half-Duplex O Bidireccional: Sólo un equipo transmite a la vez. También se llama Semi-Duplex. Ejemplo: radio de la policía (walkie-talkie.)
Ø  Full-Duplex: Ambos pueden transmitir y recibir a la vez una misma información. Ejemplo: es la red telefónica

Por Grado De Autentificación
Ø  Red Privada: Una red privada se definiría como una red que puede usarla solo algunas personas y que están configuradas con clave de acceso personal.

Ø  Red De Acceso Público: Una red pública se define como una red que puede usar cualquier persona y no como las redes que están configuradas con clave de acceso personal. Es una red de computadoras interconectadas, capaz de compartir información y que permite comunicar a usuarios sin importar su ubicación geográfica.
Red de acceso público

Por Grado De Difusión
Ø  Intranet: Una intranet es una red de computadoras que utiliza alguna tecnología de red para usos comerciales, educativos o de otra índole de forma privada, esto es, que no comparte sus recursos o su información con redes ilegítimas.
Red Intranet

Ø  Internet: Internet es un conjunto descentralizado de redes de comunicación interconectadas que utilizan la familia de protocolos TCP/IP, garantizando que las redes físicas heterogéneas que la componen funcionen como una red lógica única, de alcance mundial.
Red Internet

Por Servicio O Función
Ø  Red Comercial: Proporciona soporte e información para una empresa u organización con ánimo de lucro.
Red Comercial

Ø Red Educativa: Proporciona soporte e información para una organización educativa dentro del ámbito del aprendizaje.
Red Educativa

Ø  Red Para El Proceso De Datos: Proporciona una interfaz para intercomunicar equipos que vayan a realizar una función de cómputo conjunta.
Red para el proceso de datos

Por Topología De Red
Ø  Red En Bus: Red cuya topología se caracteriza por tener un único canal de comunicaciones (denominado bus, troncal o backbone) al cual se conectan los diferentes dispositivos.
Red en Bus

Ø  Red En Anillo: Topología de red en la que cada estación está conectada a la siguiente y la última está conectada a la primera.
Red en Anillo

Ø  Red En Estrella: Una red en estrella es una red en la cual las estaciones están conectadas directamente a un punto central y todas las comunicaciones se han de hacer necesariamente a través de éste.
Red en Estrella

Ø  Red En Malla: La topología en malla es una topología de red en la que cada nodo está conectado a todos los nodos.
Red en Malla

Ø  Red En Árbol: Topología de red en la que los nodos están colocados en forma de árbol. Desde una visión topológica, la conexión en árbol es parecida a una serie de redes en estrella interconectadas salvo en que no tiene un nodo central.
Red en Árbol

Ø  Red Mixta: Cualquier combinación de las anteriores

31 ene 2011

WI-FI

Cuando hablamos de WIFI nos referimos a una de las tecnologías de comunicación inalámbrica mediante ondas más utilizada hoy en día. Wi-Fi es una marca de la Wi-Fi Alliance (anteriormente la WECA: Wireless Ethernet Compatibility Alliance), la organización comercial que adopta, prueba y certifica que los equipos cumplen los estándares 802.11 relacionados a redes inalámbricas de área local. WIFI, también llamada WLAN (wireless lan, red inalámbrica) o estándar IEEE 802.11, no es una abreviatura de Wireless Fidelity, simplemente es un nombre comercial.
¿PARA QUE SIRVE UN ENLACE WIFI?
Los enlaces WiFi pueden tener muchas utilidades prácticas para todo tipo de entidades, empresas o negocios.
  • Unión de oficinas.
  • Unión de naves.
  • Transporte de datos, voz y video.
  • Conexión a internet sin cables.
¿A QUIÉN PODRÍA INTERESAR?
  • Ayuntamientos y Centros Educativos
  • Minería, Agricultura y Transporte
  • Seguridad y Emergencias
  • Internet y WISP
  • Polígonos
  • Empresas Privadas

SEGURIDAD Y FIABILIDAD

Uno de los problemas a los cuales se enfrenta actualmente la tecnología Wi-Fi es la progresiva saturación del espectro radioeléctrico, debido a la masificación de usuarios, esto afecta especialmente en las conexiones de larga distancia (mayor de 100 metros). En realidad Wi-Fi está diseñado para conectar ordenadores a la red a distancias reducidas, cualquier uso de mayor alcance está expuesto a un excesivo riesgo de interferencias.
Un muy elevado porcentaje de redes son instalados sin tener en consideración la seguridad convirtiendo así sus redes en redes abiertas, sin proteger la información que por ellas circulan.
Existen varias alternativas para garantizar la seguridad de estas redes. Las más comunes son la utilización de protocolos de cifrado de datos para los estándares Wi-Fi como el WEP, el WPA, o el WPA2 que se encargan de codificar la información transmitida para proteger su confidencialidad, proporcionados por los propios dispositivos inalámbricos. La mayoría de las formas son las siguientes:
 WEP, cifra los datos en su red de forma que sólo el destinatario deseado pueda acceder a ellos. Los cifrados de 64 y 128 bits son dos niveles de seguridad WEP. WEP codifica los datos mediante una “clave” de cifrado antes de enviarlo al aire. Este tipo de cifrado no está muy recomendado, debido a las grandes vulnerabilidades que presenta, ya que cualquier cracker puede conseguir sacar la clave.
 WPA: presenta mejoras como generación dinámica de la clave de acceso. Las claves se insertan como de dígitos alfanuméricos, sin restricción de longitud
 IPSEC (túneles IP) en el caso de las VPN y el conjunto de estándares IEEE 802.1X, que permite la autenticación y autorización de usuarios.
 Filtrado de MAC, de manera que sólo se permite acceso a la red a aquellos dispositivos autorizados. Es lo más recomendable si solo se va a usar con los mismos equipos, y si son pocos.
 Ocultación del punto de acceso: se puede ocultar el punto de acceso (Router) de manera que sea invisible a otros usuarios.
 El protocolo de seguridad llamado WPA2 (estándar 802.11i), que es una mejora relativa a WPA. En principio es el protocolo de seguridad más seguro para Wi-Fi en este momento. Sin embargo requieren hardware y software compatibles, ya que los antiguos no lo son.
Sin embargo, no existe ninguna alternativa totalmente fiable, ya que todas ellas son susceptibles de ser vulneradas.

DISPOSITIVOS

Existen varios dispositivos que permiten interconectar elementos Wi-Fi, de forma que puedan interactuar entre sí. Entre ellos destacan los routers, puntos de acceso, para la emisión de la señal Wi-Fi y las tarjetas receptoras para conectar a la computadora personal, ya sean internas (tarjetas PCI) o bien USB.
 Los puntos de acceso funcionan a modo de emisor remoto, es decir, en lugares donde la señal Wi-Fi del router no tenga suficiente radio se colocan estos dispositivos, que reciben la señal bien por un cable UTP que se lleve hasta él o bien que capturan la señal débil y la amplifican (aunque para este último caso existen aparatos especializados que ofrecen un mayor rendimiento).
 Los router son los que reciben la señal de la línea ofrecida por el operador de telefonía. Se encargan de todos los problemas inherentes a la recepción de la señal, incluidos el control de errores y extracción de la información, para que los diferentes niveles de red puedan trabajar. Además, el router efectúa el reparto de la señal, de forma muy eficiente.
Router WI-FI

 Además de routers, hay otros dispositivos que pueden encargarse de la distribución de la señal, aunque no pueden encargarse de las tareas de recepción, como pueden ser hubs y switches. Estos dispositivos son mucho más sencillos que los routers, pero también su rendimiento en la red de área local es muy inferior
 Los dispositivos de recepción abarcan tres tipos mayoritarios: tarjetas PCI, tarjetas PCMCIA y tarjetas USB:
 Las tarjetas PCI para Wi-Fi se agregan a los ordenadores de sobremesa. Hoy en día están perdiendo terreno debido a las tarjetas USB.
 Las tarjetas PCMCIA son un modelo que se utilizó mucho en los primeros ordenadores portátiles, aunque están cayendo en desuso, debido a la integración de tarjeta inalámbricas internas en estos ordenadores. La mayor parte de estas tarjetas solo son capaces de llegar hasta la tecnología B de Wi-Fi, no permitiendo por tanto disfrutar de una velocidad de transmisión demasiado elevada
 Las tarjetas USB para Wi-Fi son el tipo de tarjeta más común que existe y más sencillo de conectar a un pc, ya sea de sobremesa o portátil, haciendo uso de todas las ventajas que tiene la tecnología USB. Además, algunas ya ofrecen la posibilidad de utilizar la llamada tecnología PreN, que aún no está estandarizada.
 También existen impresoras, cámaras Web y otros periféricos que funcionan con la tecnología Wi-Fi, permitiendo un ahorro de mucho cableado en las instalaciones de redes.

ESTANDARES WI-FI

Existen diversos tipos de Wi-Fi, basado cada uno de ellos en un estándar IEEE 802.11 aprobado. Son los siguientes:
 Los estándares IEEE 802.11b, IEEE 802.11g e IEEE 802.11n disfrutan de una aceptación internacional debido a que la banda de 2.4 GHz está disponible casi universalmente, con una velocidad de hasta 11 Mbps , 54 Mbps y 300 Mbps, respectivamente.
 En la actualidad ya se maneja también el estándar IEEE 802.11a, conocido como WIFI 5, que opera en la banda de 5 GHz y que disfruta de una operatividad con canales relativamente limpios. La banda de 5 GHz ha sido recientemente habilitada y, además, no existen otras tecnologías (Bluetooth, microondas, ZigBee, WUSB) que la estén utilizando, por lo tanto existen muy pocas interferencias. Su alcance es algo menor que el de los estándares que trabajan a 2.4 GHz (aproximadamente un 10%), debido a que la frecuencia es mayor (a mayor frecuencia, menor alcance).
 Un primer borrador del estándar IEEE 802.11n que trabaja a 2.4 GHz y a una velocidad de 108 Mbps. Sin embargo, el estándar 802.11g es capaz de alcanzar ya transferencias a 108 Mbps, gracias a diversas técnicas de aceleramiento. Actualmente existen ciertos dispositivos que permiten utilizar esta tecnología, denominados Pre-N.
Existen otras tecnologías inalámbricas como Bluetooth que también funcionan a una frecuencia de 2.4 GHz, por lo que puede presentar interferencias con Wi-Fi. Debido a esto, en la versión 1.2 del estándar Bluetooth por ejemplo se actualizó su especificación para que no existieran interferencias con la utilización simultánea de ambas tecnologías, además se necesita tener 40.000 k de velocidad.

RED WI-FI EN CASA

Para tener una red inalámbrica en casa sólo necesitaremos un punto de acceso, que se conectaría al módem, y un dispositivo WIFI que se conectaría en nuestro aparato. Existen terminales WIFI que se conectan al PC por USB, pero son las tarjetas PCI (que se insertan directamente en la placa base) las recomendables, nos permite ahorrar espacio físico de trabajo y mayor rapidez. Para portátiles podemos encontrar tarjetas PCMI externas, aunque muchos de los aparatos ya se venden con tarjeta integrada.
En cualquiera de los casos es aconsejable mantener el punto de acceso en un lugar alto para que la recepción/emisión sea más fluida. Incluso si encontramos que nuestra velocidad no es tan alta como debería, quizás sea debido a que los dispositivos no se encuentren adecuadamente situados o puedan existir barreras entre ellos (como paredes, metal o puertas).

El funcionamiento de la red es bastante sencillo, normalmente sólo se debe conectar los dispositivos e instalar el software. Muchos de los enrutadores WIFI (routers WIFI) incorporan herramientas de configuración para controlar el acceso a la información que se transmite por el aire.
Pero al tratarse de conexiones inalámbricas, no es difícil que alguien interceptara nuestra comunicación y tuviera acceso a nuestro flujo de información. Por esto, es recomendable la encriptación de la transmisión para emitir en un entorno seguro. En WIFI esto es posible gracias al WPA, mucho más seguro que su predecesor WEP y con nuevas características de seguridad, como la generación dinámica de la clave de acceso.
Para usuarios más avanzados existe la posibilidad de configurar el punto de acceso para que emita sólo a ciertos dispositivos. Usando la dirección MAC, un identificador único de los dispositivos asignados durante su construcción, y permitiendo el acceso solamente a los dispositivos instalados.

VENTAJAS Y DESVENTAJAS

Las redes Wi-Fi poseen una serie de ventajas, entre las cuales podemos destacar:
 Al ser redes inalámbricas, la comodidad que ofrecen es muy superior a las redes cableadas porque cualquiera que tenga acceso a la red puede conectarse desde distintos puntos dentro de un rango suficientemente amplio de espacio.
 Una vez configuradas, las redes Wi-Fi permiten el acceso de múltiples ordenadores sin ningún problema ni gasto en infraestructura, no así en la tecnología por cable.
 La Wi-Fi Alliance asegura que la compatibilidad entre dispositivos con la marca Wi-Fi es total, con lo que en cualquier parte del mundo podremos utilizar la tecnología Wi-Fi con una compatibilidad total.
Pero como red inalámbrica, la tecnología Wi-Fi presenta los problemas intrínsecos de cualquier tecnología inalámbrica. Algunos de ellos son:
 Una de las desventajas que tiene el sistema Wi-Fi es una menor velocidad en comparación a una conexión con cables, debido a las interferencias y pérdidas de señal que el ambiente puede acarrear.
 La desventaja fundamental de estas redes existe en el campo de la seguridad. Existen algunos programas capaces de capturar paquetes, trabajando con su tarjeta Wi-Fi en modo promiscuo, de forma que puedan calcular la contraseña de la red y de esta forma acceder a ella. Las claves de tipo WEP son relativamente fáciles de conseguir con este sistema. La alianza Wi-Fi arregló estos problemas sacando el estándar WPA y posteriormente WPA2, basados en el grupo de trabajo 802.11i. Las redes protegidas con WPA2 se consideran robustas dado que proporcionan muy buena seguridad. De todos modos muchas compañías no permiten a sus empleados tener una red inalámbrica. Este problema se agrava si consideramos que no se puede controlar el área de cobertura de una conexión, de manera que un receptor se puede conectar desde fuera de la zona de recepción prevista.
 Hay que señalar que esta tecnología no es compatible con otros tipos de conexiones sin cables como Bluetooth, GPRS, UMTS, etc.

Por último, también merece la pena comentar la existencia de comunidades wireless que permiten el acceso gratuito a la red conectando con nodos públicos situados en diferentes puntos, por ejemplo, en una ciudad.

Esta tendencia aún no está consolidada y tiene un futuro impredecible, pues es muy probable que las compañías telefónicas se interpongan a esta práctica.

23 ene 2011

El Módem

¿QUÉ ES UN MÓDEM?
Un módem es un dispositivo que sirve para enviar una señal llamada moduladora mediante otra señal llamada portadora. Se han usado módems desde los años 60, principalmente debido a que la transmisión directa de las señales electrónicas inteligibles, a largas distancias, no es eficiente, por ejemplo, para transmitir señales de audio por el aire, se requerirían antenas de gran tamaño (del orden de cientos de metros) para su correcta recepción. Es habitual encontrar en muchos módems de red conmutada la facilidad de respuesta y marcación automática, que les permiten conectarse cuando reciben una llamada de la RTPC (Red Telefónica Pública Conmutada) y proceder a la marcación de cualquier número previamente grabado por el usuario. Gracias a estas funciones se pueden realizar automáticamente todas las operaciones de establecimiento de la comunicación.
El modem es otro de los periféricos que con el tiempo se ha convertido ya en imprescindible y pocos son los modelos de ordenador que no estén conectados en red que no lo incorporen. Su gran utilización viene dada básicamente por dos motivos: Internet y el fax, aunque también le podemos dar otros usos como son su utilización como contestador automático incluso con funciones de centralita o para conectarnos con la red local de nuestra oficina o con la central de nuestra empresa.
Aún en el caso de estar conectado a una red, ésta tampoco se libra de éstos dispositivos, ya que en este caso será la propia red la que utilizará el modem para poder conectarse a otras redes o a Internet estando en este caso conectado a nuestro servidor o a un router.
 Lo primero que hay que dejar claro es que los modem se utilizan con líneas analógicas, ya que su propio nombre indica su principal función, que es la de modular-demodular la señal digital proveniente de nuestro ordenador y convertirla a una forma de onda que sea asimilable por dicho tipo de líneas.
Es cierto que se suelen oír expresiones como modem ADSL o incluso modem RDSI, aunque esto no es cierto en estos casos, ya que estas líneas de tipo digital no necesitan de ningún tipo de conversión de digital a analógico, y su función en este caso es más parecida a la de una tarjeta de red que a la de un modem.
 Uno de los primeros parámetros que lo definen es su velocidad. El estándar más habitual y el más moderno está basado en la actual norma V.90 cuya velocidad máxima está en los 56 Kbps (Kilobites por segundo). Esta norma se caracteriza por un funcionamiento asimétrico, puesto que la mayor velocidad sólo es alcanzable "en bajada", ya que en el envío de datos está limitada a 33,6 Kbps.
Otra consideración importante es que para poder llegar a esta velocidad máxima se deben dar una serie de circunstancias que no siempre están presentes y que dependen totalmente de la compañía telefónica que nos presta sus servicios, pudiendo ser en algunos casos bastante inferiores.
 Evidentemente, el modem que se encuentre al otro lado de la línea telefónica, sea nuestro proveedor de Internet o el de nuestra oficina debe ser capaz de trabajar a la misma velocidad y con la misma norma que el nuestro, ya que si no la velocidad que se establecerá será la máxima que aquel soporte.


¿CÓMO FUNCIONA?
El modulador emite una señal denominada portadora. Generalmente, se trata de una simple señal eléctrica sinusoidal de mucha mayor frecuencia que la señal moduladora. La señal moduladora constituye la información que se prepara para una transmisión (un módem prepara la información para ser transmitida, pero no realiza la transmisión). La moduladora modifica alguna característica de la portadora (que es la acción de modular), de manera que se obtiene una señal, que incluye la información de la moduladora. Así el demodulador puede recuperar la señal moduladora original, quitando la portadora. Las características que se pueden modificar de la señal portadora son:
  • Amplitud, dando lugar a una modulación de amplitud (AM/ASK).
  • Frecuencia, dando lugar a una modulación de frecuencia (FM/FSK).
  • Fase, dando lugar a una modulación de fase (PM/PSK)
También es posible una combinación de modulaciones o modulaciones más complejas como la modulación de amplitud en cuadratura.

MÓDEMS PARA PC
La distinción principal que se suele hacer es entre módems internos y módems externos, aunque recientemente han aparecido módems llamados "módems software", más conocidos como "winmódems" o "linuxmódems", que han complicado un poco el panorama. También existen los módems para XDSLRDSI, etc. y los que se usan para conectarse a través de cable coaxial de 75 ohms (cable modems).

MÓDEMS TELEFÓNICOS
Su uso más común y conocido es en transmisiones de datos por vía telefónica.
Las computadoras procesan datos de forma digital; sin embargo, las líneas telefónicas de la red básica sólo transmiten señales analógicas.
Los métodos de modulación y otras características de los módems telefónicos están estandarizados por el UIT-T (el antiguo CCITT) en la serie de Recomendaciones "V". Estas Recomendaciones también determinan la velocidad de transmisión. Destacan:
  • V.21. Comunicación Full-Duplex entre dos módems analógicos realizando una variación en la frecuencia de la portadora de un rango de 300 baudios, logrando una transferencia de hasta 300 bps (bits por segundo).
  • V.22. Comunicación Full-Duplex entre dos módems analógicos utilizando una modulación PSK de 600 baudios para lograr una transferencia de datos de hasta 600 o 1200 bps.
  • V.32. Transmisión a 9.600 bps.
  • V.32bis. Transmisión a 14.400 bps.
  • V.34. Estándar de módem que permite hasta 28,8 Kbps de transferencia de datos bidireccionales (full-duplex), utilizando modulación en PSK.
  • V.34bis. Módem construido bajo el estándar V34, pero permite una transferencia de datos bidireccionales de 33,6 Kbps, utilizando la misma modulación en PSK. (estándar aprobado en febrero de 1998)
  • V.90. Transmisión a 56,6 kbps de descarga y hasta 33.600 bps de subida.
  • V.92. Mejora sobre V.90 con compresión de datos y llamada en espera. La velocidad de subida se incrementa, pero sigue sin igualar a la de descarga.
Existen, además, módems DSL (Digital Subscriber Line), que utilizan un espectro de frecuencias situado por encima de la banda vocal (300 - 3.400 Hz) en líneas telefónicas o por encima de los 80 KHz ocupados en las líneas RDSI, y permiten alcanzar velocidades mucho mayores que un módem telefónico convencional. También poseen otras cualidades, como es la posibilidad de establecer una comunicación telefónica por voz al mismo tiempo que se envían y reciben datos.

 PERFILES DE FUNCIONAMIENTO
Existen 3 tipos de perfil para funcionamiento de los módems:
  1. El de fábrica, (por defecto).
  2. El activo.
  3. El del usuario.
Estos perfiles están guardados en su memoria RAM no volátil y el perfil de fábrica está guardado en ROM.
Hay dos opciones o lugares de memoria donde se pueden grabar los perfiles
  1. AT&Y0, (al encender se carga el perfil = 0)
  2. AT&Y1, (al encender se carga el perfil = 1)
Estas órdenes se envían antes de apagar el módem para que los cargue en su próximo encendido.
Cuando se escriben las órdenes "AT", dependiendo del tamaño del buffer del módem, se pueden ir concatenando sin necesidad de escribir para cada uno de ellos el prefijo "AT". De esta forma, por ejemplo cuando en un programa se pide una secuencia de inicialización del módem, se puede incluir conjuntamente en una sola línea todas las órdenes necesarias para configurar el módem.

A CONTINUACIÓN SE DESCRIBEN LOS PROCESOS QUE SE LLEVAN A CABO PARA ESTABLECER UNA COMUNICACIÓN A TRAVÉS DEL MÓDEM:

Pasos para establecer una comunicación.
1) Detección del tono de línea. El módem dispone de un detector del tono de línea. Este se activa si dicho tono permanece por más de un segundo. De no ser así, sea porque ha pasado un segundo sin detectar nada o no se ha mantenido activado ese tiempo el tono, envía a la computadora el mensaje "NO DIALTONE".
2) Marcación del número. Si no se indica el modo de llamada, primero se intenta llamar con tonos y si el detector de tonos sigue activo, se pasa a llamar con pulsos. En el período entre cada dígito del número telefónico, el IDP (Interdigit pulse), se continua atendiendo al detector de tono. Si en algún IDP el detector se activa, la llamada se termina y se retorna un mensaje de BUSY. Una vez terminada la marcación, se vuelve a atender al detector de tono para comprobar si hay conexión. En este caso pueden suceder varias cosas:
  • Rings de espera. Se detectan y contabilizan los rings que se reciban, y se comparan con el registro S1 del módem. Si se excede del valor allí contenido se retorna al mensaje "NO ANSWER".
  • Si hay respuesta se activa un detector de voz/señal, la detección de la respuesta del otro módem se realiza a través del filtro de banda alta (al menos debe estar activo 2 segundos).
  • Si el detector de tono fluctúa en un período de 2 segundos se retorna el mensaje "VOICE". El mensaje "NO ANSWER" puede obtenerse si se produce un intervalo de silencio después de la llamada.
3) Establecer el enlace. Implica una secuencia de procesos que dependen si se está llamando o si se recibe la llamada.
Si se está llamando será:
  • Fijar la recepción de datos a 1.
  • Seleccionar el modo de baja velocidad.
  • Activar 0'6 segundos el tono de llamada y esperar señal de línea.
  • Desactivar señal de tono
  • Seleccionar modo de alta velocidad.
  • Esperar a recibir unos, después transmitir unos y activar la transmisión
  • Analizar los datos recibidos para comprobar que hay conexión. Si ésta no se consigue en el tiempo límite fijado en el registro S7, se da el mensaje "NO CARRIER"; en caso contrario, se dejan de enviar unos, se activa la señal de conexión, se desbloquea la recepción de datos y se da el mensaje "CARRIER".
Si se está recibiendo será:
  • Selección del modo respuesta.
  • Desactivar el scrambler.
  • Seleccionar el modo de baja velocidad y activar el tono de respuesta (p. ej. 2.400 Hz durante 3'3 s).
  • Desactivar el transmisor.
  • Esperar portadora, si no se recibe activar el transmisor, el modo de alta velocidad y el tono a 1.800 Hz.
  • Esperar el tiempo indicado en S7, si no hay conexión envía el mensaje "NO CARRIER", si la hay, indica "CONNECT", se activa el transmisor, el detector de portadora y la señal de conexión.
En resumen los pasos para establecimiento de una conexión son:
  1. La terminal levanta la línea DTR.
  2. Se envía desde la terminal la orden ATDT 5551234 ("AT" -> atención, D -> marcar, T -> por tonos, 5551234 -> número a llamar.)
  3. El módem levanta la línea y marca el número.
  4. El módem realiza el hand shaking con el módem remoto.
  5. El programa de comunicación espera el código de resultado.
  6. Código de resultado "CONNECT".
TIPOS DE MODEM
Al investigar sobre los tipos de módems existentes en el mercado, nos encontramos con la "dificultad" del gran avance que han tenido en muy corto tiempo, ya que debido a las diversas variantes y sus similitudes, es muy difícil llegar a una clasificación clara de estos dispositivos.
Para simplificar este problema, decidimos exponer todos los principales tipos de módems, aunque esta clasificación, en algunos casos, no es excluyente, ya que algunos tipos comparten y/o poseen características comunes. Es importante saber, que los módems analógicos son el punto de partida para todos los otros tipos, y corresponden exactamente a la definición de módem.

Módems Analógicos
Son dispositivos que transforman las señales digitales del computador en una señal telefónica analógica y viceversa, permitiéndole al computador transmitir y recibir información por la línea telefónica convencional. Los chips que realizan están funciones de modulación y demodulación están casi estandarizados, por lo que la diferencias entre uno u otro módem sólo se debe al tipo de carcasa o los demás elementos electrónicos que lo componen.
La velocidad de los módems analógicos va desde 9.6 Kbps hasta 56 Kbps, así por ejemplo el tiempo de transferencia de un archivo de 10 Mb va desde 23 horas a 24 minutos, respectivamente.

Dentro de los módems analógicos se distinguen módems internos y módems externos.

·         Módems Externos
Se colocan en la mesa de trabajo junto con nuestro equipo, tienen forma de caja y se conectan, por un lado a la línea telefónica y por otro lado al computador. La ventaja de ellos radica en que son portátiles y que el estado del módem se conoce a simple vista (marcando, sin/con línea, transmitiendo, etc.) debido a una luces que la mayoría presenta en su parte frontal.
La conexión módem-computador, se realiza mediante un cable a un puerto serie, o del tipo USB.
  • Puerto Serie. Son los más antiguos y, hoy en día, están siendo reemplazados por los USB. Lo importante es que este puerto debe estar configurado a la máxima velocidad. Su principal desventaja es que ocupan espacio importante y que necesitan una fuente de alimentación adicional, pero la gran ventaja es que todos los computadores tienen puertos series, por lo que son muy compatibles.
  • Puerto USB (Universal Serial Bus). Son de conexión y configuración más sencilla. Comparten el puerto con otros dispositivos, pero la mayoría no requiere una fuente de alimentación. Ocupan aproximadamente el mismo espacio que uno para puerto serie.

Usan la UART del computador, por lo que esta debe ser capaz de proporcionar la suficiente velocidad de comunicación entre ambos. Por ejemplo, para un módem de 28.800 bps, la UART debe ser de 16550 o superior para que el rendimiento sea adecuado.

·         Módems Internos
Tienen forma de tarjeta (sobre ella están dispuestos los diferentes componentes del módem) y se colocan en las llamadas ranuras de expansión. Al estar conectadas directamente en el interior del computador, sólo tienen una salida externa para su conexión a la línea telefónica.

Existen tres tipos de ranuras de conexión:
  • Ranura ISA. Debido a las bajas velocidades que se manejan en estos aparatos, hoy en día están prácticamente en desuso, a pesar que durante muchos años se utilizó en forma exclusiva.
  • Ranura PCI. Es el formato más común en la actualidad. Se configura automáticamente y supone una menor carga de trabajo para la CPU del computador. Los módem que utilizan esta ranura, son de bajo costo.
  • Ranura AMR. Se encuentran sólo en algunas placas muy modernas, pero son poco recomendables debido a su bajo rendimiento. Hacen que el procesador haga todo el trabajo. Hoy en día, están en desuso.
La principal ventaja de estos módems reside en su mayor integración con el ordenador, ya que no ocupan espacio sobre la mesa y reciben energía eléctrica directamente del propio ordenador. Además, suelen ser algo más baratos debido a que carecen de carcasa y transformador, especialmente si son PCI (en este caso, son casi todos del tipo "módem software"). Por el contrario, son algo más complejos de instalar y la información sobre su estado sólo puede obtenerse por software.
Además existe dos tipos más de módems analógicos que caben dentro del tipo interno, pero que debido a su particularidad se tratarán por separado: módem software o HSP y módem PC Card.

·         Módems Software o HSP
Son módems internos en los cuales se han eliminado piezas electrónicas de manera que el microprocesador del computador debe suplir las funciones de los elementos retirados mediante software. Generalmente, utilizan la ranura PCI.
En este tipo de módems se prescinde de dos componentes básicos de este tipo de aparatos:
  • UART, encargado de la recepción y transmisión de las señales.
  • Un chip de proceso encargado de las instrucciones.
Como tienen menos piezas, tienden a ser más baratos, pero como utilizan software necesitan microprocesadores más potentes para funcionar correctamente, ya que su rendimiento depende del número de aplicaciones abiertas.

Debido a que el software que los maneja está disponible para Windows, se les conoce también como Winmódems. Esto significa que al utilizar otro sistema operativo, el módem no funciona.

·         Módems PC-Card
Son módems que se utilizan en computadores portátiles. Su tamaño es similar al de una tarjeta de crédito, algo más gruesa, pero sus capacidades pueden ser igual o más avanzadas que en los modelos normales.

No necesita fuente de alimentación externa y su consumo eléctrico es reducido, aunque no es conveniente abusar de él cuando lo utilizamos en un computador portátil usando las baterías.

Módems Digitales
Los módems digitales, como su nombre lo indica, necesitan una línea telefónica digital, llamada RDSI o ISDN (en inglés), permitiendo velocidades hasta de 128 kbps. La Red Digital de Servicios Integrados (RDSI) no es sino la evolución natural de las líneas telefónicas convencionales.
En un comienzo, en la telefonía todos sus elementos eran analógicos. Posteriormente, aparecieron las centrales digitales capaces de controlar más líneas de usuarios y realizar conexiones más rápido. La comunicación en centrales también cambió, realizándose en forma digital mejorando sustancialmente la calidad de las comunicaciones.
MÓDEM DIGITAL
Courier™ I-Modem ISDN with V.Everything®de Us Robotics.

Con una línea RDSI podemos realizar una comunicación digital de extremo a extremo, con mayores velocidades de conexión y una menor tasa de errores. Puede utilizar el mismo par de hilos de cobre que se utiliza para las líneas analógicas, por lo que el cambio a línea digital supone una inversión mínima.

Las ventajas de los usuarios que poseen RDSI son:
·         Posibilidad de mantener dos comunicaciones distintas con una sola línea.
·         Tiempos mínimos para establecer una conexión.
·         Mayor calidad de la conexión.
La RDSI se divide en dos tipos de líneas. Un acceso primario o PRI y otro acceso básico o BRI.
El Acceso Básico (BRI) es el tipo de conexión más común a la RDSI. Se compone de dos canales B de 64 Kbps cada uno y un canal D de 16kps. Los canales B son utilizados para la transmisión de información del usuario (voz, datos, fax, etc.), mientras que el canal D se utiliza para señalización.
Los Accesos Primarios (PRI) son conexiones a la RDSI para grandes centrales telefónicas o grandes servidores de acceso remoto a redes de área local principalmente. Se componen de 30 canales B de 64 Kbps cada uno y un canal D de 64 Kbps.
Aunque estos dispositivos no necesitan de ningún tipo de conversión de digital a analógico y su función se acerca más a una tarjeta de red, muchas fuentes los consideran como módems.

Módems por cable
Un cable módem es un dispositivo que permite acceso a Internet a gran velocidad vía TV cable. Se emplea generalmente en los hogares, ya que la mayor parte de las áreas residenciales tienen instalación por cable. Son cajas externas que se conectan al computador. Tiene dos conexiones, uno por cable a la conexión de la pared y otro al computador, por medio de interfaces Ethernet.

Existen dos tipos de cable módem:
  • Módems coaxiales de Fibra Óptica (HFC, Hybrid Fiber-coax). Son dispositivos bidireccionales que operan por cable HFC. Ofrecen velocidades de carga en el rango de 3 a 30 Mb, con velocidades de descarga que van de 128Kb hasta 10Mb, aunque actualmente los usuarios pueden esperar velocidades alrededor de 4Mb.
  • Módems Unidireccionales. Son más antiguos que los anteriores que operan por los cables de televisión coaxiales tradicionales. Permiten velocidades de carga de hasta 2Mb, y requieren un módem convencional de marcación para completar la conexión.
Puede haber confusión al denominarle módem a este dispositivo, ya que solamente tenemos la imagen de un módem de línea telefónica, pero sí es un módem, ya que modula y demodula señales, aunque es de un orden de magnitud más complicado.
Típicamente un cable módem envía y recibe datos en dos diferentes modos. En la dirección hacia el abonado la señal digital es modulada en un típico ancho de banda de algún canal de televisión de 6 MHz, que podría estar entre 42 MHz y 750 MHz. Hay diversos esquemas de modulación, pero los dos más populares son QPSK (hasta 10 Mbps) y QAM (hasta 36 Mbps).

El canal de retorno del abonado es más delicado. Normalmente, en una red de cable, el camino de retorno del abonado conocido como canal de reversa, es transmitido entre 5 y 40 MHz. Esta frecuencia tiende a ser muy ruidosa, porque existen muchas interferencias de radios AM y además interferencia de ruidos de los artefactos hogareños. Hay que agregar la interferencia introducida en el propio hogar, la pérdida en los conectores, o el cable en mal estado. Como las redes de cable están realizadas en forma de árbol y subredes en forma de ramas, todo este ruido se va sumando a través de su viaje en el canal de retorno, combinándose e incrementándose. Por esta causa, muchos fabricantes estarían usando QPSK o similares esquemas de modulación en el canal de retorno, porque QPSK es un esquema más robusto que otras técnicas de modulación en un ambiente de ruido.

Módems ADSL
ADSL (Asymmetric Digital Subscriber Line o Línea de Abonado Digital Asimétrica) es una tecnología que, basada en el par de cobre de la línea telefónica normal, la convierte en una línea de alta velocidad. Emplea los espectros de frecuencia que no son utilizados para el transporte de la voz, y que por lo tanto, hasta ahora, no se utilizaban, abriendo de esta forma un canal de datos a alta velocidad, permitiendo a su vez (gracias a esa separación datos/voz), poder aplicar una tarifa plana para ese transporte de datos (los de Internet).
En el servicio ADSL, el envío y recepción de datos se establece desde el computador del usuario a través de un módem ADSL. Estos datos pasan por un filtro (splitter), que permite la utilización simultánea del servicio telefónico básico y del servicio ADSL. Es decir, el usuario puede hablar por teléfono a la vez que está navegando por Internet.

ADSL utiliza técnicas de codificación digital que permiten ampliar el rendimiento del cableado telefónico actual. Para conseguir estas tasas de transmisión de datos, la tecnología ADSL establece tres canales independientes sobre la línea telefónica estándar.
  • Dos canales de alta velocidad (uno de recepción de datos y otro de envío de datos).
  • Un canal para la comunicación normal de voz (servicio telefónico básico).
Los dos canales de datos son asimétricos, es decir, no tienen la misma velocidad de transmisión de datos. El canal de recepción de datos tiene mayor velocidad que el canal de envío de datos.
Esta asimetría, característica del ADSL, permite alcanzar mayores velocidades en sentido red-usuario, lo cual se adapta perfectamente a los servicios de acceso a información en los que normalmente, el volumen de información recibido es mucho mayor que el enviado. ADSL permite velocidades de hasta 8 Mbps en el sentido red-usuario y de hasta 1 Mbps en el sentido usuario-red.
Las principales ventajas de ADSL son:
  • Uso simultáneo de Internet y de teléfono / fax, a través de la misma línea telefónica.
  • Always Online. Conexión permanente a gran velocidad a Internet.
  • Tarifa plana de conexión a Internet.
  • Acceso a servicios y contenidos de banda ancha.
  • Mayor seguridad.
Es muy difícil encontrar un módem ADSL en el comercio, los proveedores de servicio ADSL lo incluyen junto con la conexión.